![]() Method and device for automatic control of the postion of a burden suspended in a main wire on a cra
专利摘要:
There is disclosed a method for automatic control of the position of a burden (8) suspended in a main wire (6) of a crane (2), where the burden (8) is connected with at least two tag lines (24, 25, 30 ,31) which respectively is connected to a number of winches (26, 27, 32, 33) corresponding to the number of tag lines (24, 25, 30, 31), which is characterized in, that the control of the position and rotation of the burden is performed by actuators (28, 29, 34, 35) on the respective winces (26, 27, 32, 33) which perform ease off / tightening of the respective tag lines (24, 25, 30 ,31) from signals of data relating to current measurements of angle of ro-tation of the burden (8) around the center axis of the main wire (6) (y-axis) and/or changes in said angle over time, and/or positions and/or changes of positions over time of burden (8) or the lifting device, measured by a registration unit (46) arranged on the burden (8) or on the lifting device in which the burden (8) is arranged, which is transmitted to and processed in a central monitoring- and control unit (36) which performs control of rotation and position of the burden (8) by multiple transmitting of compensatory control signals to relevant actuators (28, 29, 34, 35) for tag lines (24, 25, 30, 31) and the crane main wire (6), from multiple burden of signals which are processed in the central monitoring- and control unit (36). Hereby is enabled possi-bility to guide and control the position of the burden (8) even if it is imposed of external random impacts, as wind and sea. Further the method is useable in positioning the burden (8) in correct mounting position. 公开号:DK201600255A1 申请号:DKP201600255 申请日:2016-04-28 公开日:2016-05-30 发明作者:Per E Fenger 申请人:Liftra Ip Aps; IPC主号:
专利说明:
TITLE: METHOD AND DEVICE FOR AUTOMATIC CONTROL OF THE POSTION OF A BURDEN SUSPENDED IN A MAIN WIRE ON A CRANE. The present invention relates to a method for automatically controlling the position of a burden suspended from a main wire of a crane where the burden is connected to at least two tag lines which respectively are connected to the number of the tag lines corresponding winches in which the control of the position of burden is carried out by actuators in the respective winch performing ease off / tightening of the respective tag lines, from the signals from the measuring devices placed on the burden and / or the crane, and / or outside of the burden and / or the crane, which is fed to a central monitoring and control unit emitting control signals to the actuators. Controlling the position of a burden which is raised above ground level to be mounted in a precise position by means of a main wire of a crane and winches, causes often problems as the burden is exposed to external physical impacts such as wind, and sometimes influences from seas on the crane. One example on this is the installation of the blades on wind turbines on land and at sea, where wind action on the blade can be a very disturbing element as the blades typically include a mounting flange, whose holes must be brought to overlap a mounting flange on the turbine hub. Said control has so far been carried out by establishing tag lines, so-called "tag lines" extending between the crane, the crane outrigger arm, the burden and secondary winches, which is controlled manually by the crane operator / operators, with a view to control and maintain the burden in a desired position in which it for example is to be mounted or attached in some other way. This manually performed the control of the secondary winches is in many cases fully sufficient in most assembly work of this kind, but in some occasions, it has nevertheless shown itself to be insufficient, since the compensation of the length of one or more of the tag lines is only carried out, when the crane operator visually may find that the burden has shifted away from the preferred position, which means that a new positioning of the burden to the mounting position is required, with consequent time consumption. The reason that it will not be possible for the operator to compensate the position of the burden, is that the tag lines give way elastically, during the considerable tensile forces are exposed to, which requires a compensatory adjustment of the length of one or more of the tag lines to maintain the burden in a desired mounting position. Taking in consideration, that the hourly rental rate for the cranes is very high, there will be significant savings by being able to avoid the impact of the burden, resulting in the aforementioned positioning of this should be repeated. Further there is a safety issue in preventing the burden from moving, as personnel are present at assembly points for the burden, where sudden shifts of the burden may cause that dangerous work situations with major security risks occurs. WO 2011 088832 A1 (AH IND. PROJECTS APS) discloses a method for automatic control of the position of a burden suspended in a the main wire of a crane, where the burden is connected to at least two tag lines, which is connected to a number of winches corresponding to the number of taglines, where the control of the position of the burden is performed by actuators on the respective winches which perform ease off / tightening of the respective tag lines based on signals from measurement units (tension sensor means) arranged outside the burden, where the signals are processed in a central monitoring- and control unit which transmits control signals to the actuators for the tag lines. This known method and system perform ease off/tightening of the respective tag lines based on signals from tension sensor means, which means, that the position of the burden carried in the main crane wire has changed in an extent, that it is registered by the tension sensor means, and data concerning the changes is send for processing in the central monitoring and control unit, which subsequently transmits control signals to the actuators for the tag lines. Said process has an access time, in which the burden will be able to displace from a preferred position. However, it is highly preferred to reduce said access time to a minimum, as a reduction in access time on only 0,01-1 second may prevent that the burden is displaced to an inappropriate extent. In particular when mounting the blades on large wind turbines on land the above problems occurs, but significantly more pronounced when installing the blades of wind turbines located in territorial waters, where wind impact of the burden /wings are significantly more pronounced and greater than land-based wind turbines but where the wave activity also influences the crane's position. The method according to the invention is in particular developed with the intention of being able to control a blade for a wind turbine during installation thereof, but since the method of the invention is applicable generally to the management of a burden suspended from a lifting wire of a crane, there is instead used term "burden " of the item suspended in the main wire of the crane. Thus there is a need to be able to perform a better and more efficient management of the position and rotation of a burden suspended in the main wire of a crane, to carry out assembly work on the installation site for the burden safely and quickly, and also in conditions of larger and more external and uncontrollable physical effects of the burden and the crane and it is object of the invention to provide a method for automatically controlling the position of a burden suspended from a main wire of a crane where the burden is connected to at least two tag lines which respectively are connected a winch and where the number winches corresponds to the number of taglines, in which the control of the position of the burden is carried out by actuators on the respective winches performing ease off/tightening of the respective tag lines, from the signals from measuring devices placed on the burden and/or the crane, and/or outside burden and/or the crane, which is fed to a central monitoring- and control unit, which transmit control signals to the actuators for the tag lines. It is further the object of the invention to provide a system for carrying out the above-method of the invention. It is by the invention realized that this object can be achieved by a method as stated in the preamble, which is characterized in, that the signals consists of data relating to current measurements of angle of rotation of the burden around the center axis of the main wire (y-axis) and/or changes in said angle over time, and/or positions and/or changes of positions over time of burden or the lifting device, measured by a registration unit arranged on the burden or on the lifting device in which the burden is arranged. Hereby it is achieved that the central monitoring- and control unit on the basis of received signals from the measuring devices, subsequent to processing data from the measuring devices, performs necessary ease off and tightening of the relevant tag lines by transmitting control signals to the appropriate actuators for relevant tag lines, whereby the positioning of the burden in a desired mounting position easier will be maintained, during larger external, uncontrollable, physical impacts of this and/or the crane than it hierhereto has been possible, so it is avoided that the burden moves so much, that the extent of manually performed operations with the crane for the positioning of the burden is reduced and thus the consumption of crane hours. The main feature, compared to the state of the art, is, that the control unit receive data concerning displacement of the burden directly and performs immediate processing thereof, and transmits compensating signals to the relevant actuators for relevant tag lines. This enables a more swift reaction on wind impacts, since processing of the compensating signals are initiated immediately on displacements and/or of the displacement over time of the burden. In another embodiment of the method according to the invention, the central monitoring- and control unit perform control of the rotation and position of the burden by multiple transmitting of compensating control signals to relevant actuators for tag lines and the main wire of the crane from input signals relating to current measurements of angle of rotation of the burden around the center axis of the main wire (y-axis) and multiple input signals, which are processed in the central monitoring- and control unit. In the widest extent it is hereby achieved by the use of the method according to the invention, that a crane provided with a control system, build in accordance with the method according to the invention, that a burden suspended from the main wire of a crane, can be lifted up from the ground level and be positioned at the installation site without intervention or operation of the crane functions directly by the operator. The central monitoring- and control unit carries out processing of multiple data types, and thus performs a fast and very efficient control of the rotation and the position of the burden, suspended in the crane main wire. In a third embodiment of the method, the input signals supplied to the central monitoring- and control unit, further is constituted by -data from measurements of wind speed and wind direction in a distance from the burden and / or -data from measurements of humidity and / or -data from measurements of wave activity / seaway and / or -data from measurements of the temperature. This provides the ability of in the central monitoring- and control unit to predict a change in position of the burden based on a future wind gusts, or a wave that influences the crane position, thereby enabling a preventive adjustment of the relevant tag lines, so that a incoming gust of wind or a wave, will not affect the position of burden. As also the position of the mounting site of the burden is influenced by for example wind and waves, the method according to the invention in a fourth embodiment may include that the input signals supplied to the central monitoring- and control unit further consists of -measurement of the position of the mounting position of the burden and -calculated distances between a selected or more points and/or angles on the burden and the mounting position of the burden. This provides the opportunity for a more precise positioning of the burden in relative to the installation site. The method may in a fifth embodiment include that the signals supplied to the central monitoring- and control unit further consists data from -determination of the length of the tag lines based on a traction force impact on the tag lines and/or measurement of the length of an actual tag line on an actu- al winch with a current sensors with digital/analog output connected to the central monitoring- and control unit. Hereby it is achieved that the central monitoring- and control unit on basis of registration of an increased traction force in one or more of the tag lines due to uncontrollable external physical influence by the burden or the crane, and recorded lengths of all the tag lines, by emitting of control signals to the appropriate actuators for tag lines to ease of/tighten the relevant tag lines, to maintain the burden in the desired position. The method may in a sixth embodiment comprise that changes to the positioning of the burden is controlled in, that calculations to predict changes in position of burden on the basis of measurements of wind speed and / or direction of the wind and / or wave activity / seaway and / or humidity and / or temperature are performed in the monitoring- and control unit, and that the monitoring- and control unit on the basis of the estimated change of the position of the burden performs compensating displacements of the actuators for the relevant tag lines. The accuracy of the control of the position of the burden suspended in the main wire of the crane is thereby increased, since, for example, humidity and temperature is affecting the density of the air is in motion due to the wind, which might influence the burden in a larger or lesser extent. The possibility to carry out rotation of the burden in order to position it correctly is of great importance in the performance of the assembly work why it is preferred that in the method according to the invention, are used a number of tag lines to the control / management of the rotation of the burden about the x axis, y-axis and z-axis, wherein the x-axis is defined as a horizontally oriented axis oriented towards the crane outrigger arm, the z-axis is defined as a horizontally oriented axis extending orthogonal to the x-axis and y-axis is defined as a vertically oriented axis extending orthogonal to the x-axis and y-axis. The possibility of being able to displace a burden suspended from the crane's main wire is also of great importance in the performance of the assembly works, why it is preferred that in the method according to the invention, a number of tag lines to the control / command of the displacement of the burden along the x axis, and the z-axis. In a further embodiment of the method according to the invention, the signals supplied to the central monitoring and control unit consists further of additional data from a global positioning system (GPS) or a local positioning system related respectively to the burden and/or the installation site of the burden. The advantage of this is that it becomes possible, faster and more accurately, to manage the burden, or a relevant end portion thereof towards the mounting site, taking into account not only the position of the burden, but also the location for the assembly position, and possibly occurring changes of the assembly position. A further embodiment of the method according to the invention comprises that the central monitoring- and control unit performs the control of the position of the burden by multiple transmission of control signals to the appropriate actuators for the tag lines and the crane main wire, from the multiple input signals processed in the central monitoring- and control unit. A device for carrying out the method according to the invention is characterized by that it comprises at least one IMU arranged on the burden-, or on a lifting aggregate in which the burden is arranged, said IMU transmitting signals comprising data concerning measurement of angles, including current measurements of angle of rotation of the burden around the center axis of the main wire (y-axis) and/or changes in said angle over time, and/or positions and/or changes of positions over time of burden or the lifting device, measured by a registration unit arranged on the burden or on the lifting device in which the burden is arranged and position, changes in angles and position over time relative to the x-axis and z-axis, and changes of position of the burden over time to a central monitoring- and control unit which performs control of rotation and position of the burden by multiple transmitting of compensatory control signals to relevant actuators for tag lines and the main wire of the crane, from multiple input of signals being processed in the central monitoring- and control unit, and said device further comprises a manual operated control panel for controlling the operations of the crane, and which control panel is connected with the central monitoring- and control unit comprising at least one on the burden-, or on a lifting device in which the burden is arranged, -mounted IMU (Inertial Measurement Unit) which transmits signals containing data concerning rendered measurement of angles and position, changes of angles over time, and changes of positions over time for the burden, to a central monitoring-and control unit that performs control of rotation and position of the burden by multiple transmitting of compensatory control signals to relevant actuators for tag lines and the crane main wire from multiple input of signals which are processed in the central monitoring- and control unit, and said device further comprises a manual operated control panel for controlling the operations of the crane, which control panel is connected with the central monitoring- and control unit. The device according to the invention will when used for example mounting the blades of wind turbine hub, significantly enhance the efficiency of the task of positioning a wind turbine blade correctly in relation to the installation site of the wind turbine hub, as the crane operator does not need to concentrate on compensating for external influences on the blade suspended from the crane's main wire, but only need to concentrate on operating the crane's main functions in terms of lift and rotation of the crane. The invention is explained in more detail in the following with reference to the accompanying drawings, wherein; Fig. 1 is a perspective view of a crane with a burden arranged in the main wire, with tag lines connected to the burden, indicating the axes x, y, z, Fig. 2 shows the same as Fig. 1, but seen from another angle, Fig. 3A and B is an illustration of an embodiment of the method for controlling the position of a burden suspended from a main wire of a crane, according to the invention, Fig. 4 is an illustration of a further embodiment of the method for controlling the position of a burden suspended from a main wire of a crane, according to the invention. In Fig. 1 and Fig. 2 is shown a crane 2, comprising a crane boom 4 with a main wire 6 in which a burden 8 which in the illustrated embodiment consists of a blade for a wind turbine 10, for mounting on a mounting surface 12 on the turbine hub 14. The burden 8 (blade) as shown in the drawings are illustrated highly simplified as that the blade could be arranged in a device in which the blade is carried. Fig. 1 and Fig. 2 shows the same, but viewed from different angles. As it appears from the figures, there is indicated a three-dimensional coordinate system 16 with a horizontally oriented x-axis 18 oriented towards the crane boom 4, one horizontally oriented z-axis 20 oriented perpendicular to the x-axis 18, and a vertical oriented y-axis 22, respectively, oriented perpendicular to the x-axis 18 and z-axis 20. As also seen in Fig. 1 and Fig. 2, a first guide wire 24 extends between the burden 8 and a first winch 26, with a first actuator 28 and a second guide wire 30 extends between the burden 8 and a second winch 32, with a second actuator 34. The actuators 28, 34 are connected with a central monitoring- and control unit 36 on the crane. It should be noted that the central monitoring- and control unit 36 may be dislocated externally, for example, as a portable device. As further seen in Fig. 1, Fig. 2, Fig. 3, Fig.4 and in particular in Fig. 5, there is placed an angle sensor 46 with a wireless transmitter on the burden, a so-called IMU (Inertial Measurement Unit) which is in communication with the central monitoring- and control unit 36. The angle sensor 46 is able to detect the angles and angular deviations, and changes of the angles overtime (angular velocities) in all directions (x, y, z), as well as position. Measured data on these matters is converted in the wireless transmitter to signals which interactively are transmitted to the central monitoring- and control unit 36, which based on the received signals from the angle sensor 46, performs control of the position of the burden 8 by multiple transmission of control signals to the relevant actuators 28, 29, 34, 35, for tag lines 24, 25, 30, 31 and the crane main wire 6, from multiple input signals processed in the central monitoring and control unit 36. It should be noted that the central monitoring- and control unit 36 may also receive and process signals from other relevant signal generators, comprising data concerning; wind speed, wind direction, humidity, wave activity, temperature, mounting position for the burden, calculated distances and / or angles over time between a selected point or multiple points or angles on the burden 8, and the installation position 12 of the burden 8 thereof. In the attachment points 38, 40 respectively for the first and the second guide wire 24, 30 is in the shown embodiment in Fig. 1-4 of the method according to the invention, is disposed a first sensor 42 and second sensor 44, which continuously detects the traction force in the respective tag lines 24, 30. The sensors 42, 44 may alternatively be disposed on the crane 2. It should be noted the embodiment shown in Fig. 5 comprising tag lines 25 and 31 also may include sensors for detecting the traction force in the tag lines. All data relating to traction force in the respective tag lines 24, 25, 30, 31 are converted into signals containing data relating to said recorded traction forces applied to the central monitoring- and control unit. A counter-clockwise rotation of the burden 8 about the y-axis 22, may for example take place in that the actuator 28, performs an ease off on the first winch 26, whereby the first tag line 24 is extended, simultaneously with the second actuator 34 performs a similar hauling with the second game 32, wherein the second tag line 30 is shortened. It should be noted that the number of tag lines on a crane may be more than the two shown and described above, see for example Fig. 5 but of the interest of clarity is initially only referred to the two shown in the drawing in Fig. 1 and Fig. 2, Fig. 3 and Fig. 4. But it will be granted, that the use of more tag lines, for example arranged with bases on the crane arm 4, cf. Fig. 5, it will be possible to displace the burden to a desired position with high accuracy. In Fig. 5 is shown an embodiment of the invention, comprising four tag lines 24, 25, 30, 31, each with its own winch 26, 27, 32, 33, and sensors 28, 29, 34, 35, of which two of the tag lines has bases on the crane arm 4. Further is the central monitoring and control unit 36 seen, where it is tried in a generally diagrammatical-ly way to illustrate how a device for carrying out the method according to the invention operates in practice. The device consists of the angle sensor 46 with the wireless transmitter, and a portable operator-operated control panel 50, which both communicates wireless with the central monitoring- and control unit 36. The central monitoring- and control unit 36 receives interactive data from the angle sensor 46, processed by the central monitoring- and control unit 36, which subsequently sends control signals to the actuators on the winches 28, 29, 34, 35, and the central monitoring- and control unit 36 also receives current control values from the sensors measuring the length of the tag lines 24, 25, 30, 31 and the traction force in the respective wires. Thus, the central monitoring- and control unit 36 performs control of the rotation and position of the burden 8 by multiple sending of compensating control signals to relevant actuators 28, 29, 34, 35 for the tag lines 24, 25, 30, 31 and the crane main wire 6, from multiple load of signals which is processed in the central monitoring- and control unit 36. The actuators 28, 29, 34, 35 of the winches 26, 27, 32, 33 continuously records the length of tag lines 24, 25, 30, 31 and signals in this regard is supplied to the central monitoring- and control unit 36. Signals regarding registered traction force in the respective tag lines 24, 30, registered at the first sensor 42 and second sensor 44 is also ongoing supplied the central monitoring- and control unit 36, which on the basis of said registered traction calculates the actual length of the respective tag lines 24, 30 and in the event of changes in the lengths of the respective tag lines 24, 30, sends a signal to the relevant actuator 28, 34 to compensate for changes in length, by activation of the winches 26, 32. Measurement of the traction forces is, however, secondary to the monitoring- and controlling the burden 8, the central monitoring- and control unit 36 performs, as this is primarily based on the received signals from the recording unit 46 which is arranged on the burden 8. In Fig. 3A and 3B is shown how a control system of the prior art operate, where control of the rotation and positioning of the burden 8 solely is based on measurement of the traction forces in the tag lines. Step 1 shows how a relevant actuator 28, 34 has detected the length of a guide wire 24, 30, and the traction F1 in the same, registered by the sensors 42, 44. Step 2 shows how that a change of the force F2 at one or both tag lines 24, 30, has taken place for example as a result of the effect of wind on the burden 8, is detected on the sensors 42, 44 and the change of the force is treated in the central monitoring- and control unit 36 which calculates the amount of the respective tag lines 24, 30 is extended (L1) upon which the central monitoring- and control unit 36 emits control signal (step 3) to the actuators 28, 34 to carry out the activation of the winches 26, 32 for adjustment of the length of the respective tag lines 24, 30 (in the case shown by tightening the wire), so the position of the burden 8 is maintained. Step 1,2 and 3 are repeated continuously, so that the central monitoring-and control unit 36 receives continuous updated signals from the sensors 42, 44 and the actuators 28, 34 and the central monitoring- and control unit 36 performs a continually calculate the length of tag lines 24, 30, and performs continuously necessary adjustment of the length of the tag lines, for retaining the position of the burden 8. In Fig. 4 is shown a version of the method according to the invention in which the central monitoring and control unit 36 receives signals relating to the position, the rotational / angular motion and angular speed of the burden 8 from a signal generator 46 located on the burden 8. The signals are processed in the central monitoring- and control unit 36 upon which control signals are transmitted to the actuators 28, 34, concerning adjusting the length of the tag lines 24, 30. This version of the method according to the invention may also include that the central monitoring- and control unit 36 also receives and processes signals from the sensors 42, 44 and actuators 28, 34. In Fig. 5 is shown a version of the method according to the invention in which the central monitoring- and control unit 36 receives signals relating to the position, the rotational / angular motion and angular speed of the burden 8 from a signal transmitter located on the burden 8 in form of an angle sensor 46 which includes a wireless transmitter, a so-called IMU (Inertial Measurement Unit). The signals are processed in the central monitoring- and control unit 36 upon which control signals to the actuators 28, 29, 34, 35, adjusting the length of the tag lines 24, 25, 30, 31, are transmitted. This embodiment of the method according to the invention may also comprise that the central monitoring- and control unit 36 also receives and processes signals from the sensors 42, 44 and actuators 28, 29, 34, 35, and other signal generators with relevant data for processing in the central monitoring- and control unit 36, referred to above, for positioning of the burden 8 after which the central monitoring- and control unit (36) performs control of rotation and position of the burden (8) by multiple transmission of compensating control signals to the relevant actuators (28, 29, 34, 35) for the tag lines (24, 25,30, 31) and the crane main wire (6). In Fig. 5 appears furthermore the main components forming part of a device for performing the method according to the invention, namely, the angle sensor 46 with the signal generator, the central monitoring- and control unit 36, signal generators and signal receivers, and the operator-operated control panel 50, with signal transmitter and signal receiver for communication with the central monitoring- and control unit 36. Thus by the invention, there is provided a method and a device for obtaining an unprecedented effective control of the rotation and displacement of a burden 8 suspended by the main wire 6 of a crane 2, as said control is effected by multiple transmittal of compensating control signals to relevant actuators 28, 29, 34, 35 for the tag lines 24, 25, 30, 31 and the crane main wire 6 from multiple input signals relating angles and angular velocities measured by one or more, on the burden 8 disposed angle sensor(s) 46 which includes a wireless transmitter, a so-called IMU (Inertial Measurement unit), said signals being processed in the central monitoring- and control unit 36. The advantage is that control is based on actual measured variations of angles and angular speeds of the burden, and not on indirect measurements of tension in the tag lines 24, 25, 30,31, where the lengths of these must first be determined by calculations in the central monitoring- and control unit 36.
权利要求:
Claims (10) [1] 1. Method for automatic control of the position of a burden (8) suspended in the main wire (6) of a crane (2), where the burden (8) is connected to at least two tag lines (24, 25, 30, 31) which is connected to a number of winches (26, 27, 32, 33) corresponding to the number of tag lines, where the control of the position of the burden is performed by actuators (28, 29, 34, 35) on the respective winches (26, 27, 32, 33) which performs ease off / tightening of the respective tag lines based on signals from measurement units arranged on the burden (8), and/or the crane, and/or outside the burden and/or the crane, said signals being processed in a central monitoring- and control unit (36) which transmits control signals to the actuators (28, 29, 34, 25) for the tag lines characterized in, that the signals consists of data relating to current measurements of angle of rotation of the burden (8) around the center axis of the main wire (6) (y-axis) and/or changes in said angle over time, and/or positions and/or changes of positions over time of burden (8) or the lifting device, measured by a registration unit (46) arranged on the burden (8) or on the lifting device in which the burden (8) is arranged. [2] 2. Method according to claim ^characterized in, that the central monitoring- and control unit (36) perform control of the rotation and position of the burden (8) by multiple transmitting of compensating control signals to relevant actuators (28, 29, 34, 35) for tag lines (24, 25, 30, 31) and the main wire (6) of the crane from input signals relating to current measurements of angle of rotation of the burden (8) around the center axis of the main wire (6) (y-axis) and multiple input signals, which are processed in the central monitoring- and control unit (36). [3] 3. Method according to claim 1 or 2, characterized in, that the input signals further consists of -data from measurements of wind speed and wind direction in a distance from the burden (8) and / or -data from measurements of humidity and / or -data from measurements of wave activity / seaway and / or -data from measurements of the temperature. [4] 4. Method according to any of the claims 1-3, characterized in, that the input signals further consists of -measurement of the position of the mounting position (12) of the burden (8) and -calculated distances between a selected or more points and/or angles on the burden (8) and the mounting position (12) of the burden (8). [5] 5. Method according to any of the claims 1-4, characterized in, that the signals further consists of data from determination of the length of the tag lines (24, 25, 30, 31) based on a traction force impact on the tag lines and/or measurement of the length of the tag lines with a current sensors (42, 44) with dig-ital/analog output connected to the central monitoring- and control unit (36). [6] 6. Method according to any of the claims 1-5, characterized in, that changes to the positioning of the burden (8) is further controlled in, that calculations to predict changes in position of the burden (8) on the basis of measurements of wind speed and / or direction of the wind and / or wave activity / seaway and / or humidity and / or temperature are performed in the monitoring- and control unit (36), and that the monitoring- and control (36) unit on the basis of the estimated change of the position of the burden (8) performs compensating displacements by the actuators (28, 29, 34, 35) and winches (26, 27, 32, 33) for the relevant tag lines (24, 25, 30, 31). [7] 7. Method according to any of the claims 1-6, characterized in, that a number of tag lines (24, 25, 30, 31) is used for control the rotation of the burden (8) around the x-axis (18, y-axis (22) and z-axis (20). [8] 8. Method according to any of the claims 1-7, characterized in, that a number of tag lines (24, 25, 30, 31) are used for stabilizing, control/guiding of displacement the burden (8) along the x-axis (18) and the z-axis (20). [9] 9. Method according to any of the claims 1-8, characterized in, that the signals further consists of data from a global positioning system (GPS) or a local positioning system related respectively to the burden (8) and/or the mounting location (12) for the burden (8). [10] 10. Device for performing the method according any one of the claims 1-9,, characterized in, that it comprises at least one IMU (46) arranged on the burden (8)-, or on a lifting aggregate in which the burden (8) is arranged, said IMU (46) transmitting signals comprising data concerning measurement of angles, including current measurements of angle of rotation of the burden (8) around the center axis of the main wire (6) (y-axis) and/or changes in said angle over time, and/or positions and/or changes of positions over time of burden (8) or the lifting device, measured by a registration unit (46) arranged on the burden (8) or on the lifting device in which the burden (8) is arranged and position, changes in angles and position over time relative to the x-axis and z-axis, and changes of position of the burden (8) over time to a central monitoring- and control unit (36) which performs control of rotation and position of the burden (8) by multiple transmitting of compensatory control signals to relevant actuators (28, 29, 34, 35) for tag lines (24, 25, 30, 31) and the main wire (6) of the crane, from multiple input of signals being processed in the central monitoring- and control unit (36), and said device further comprises a manual operated control panel (50) for controlling the operations of the crane, and which control panel (50) is connected with the central monitoring- and control unit (36).
类似技术:
公开号 | 公开日 | 专利标题 DK178978B1|2017-07-24|Method and device for automatic control of the postion of a burden suspended in a main wire on a crane. US10676326B2|2020-06-09|Method for installing a rotor blade on a wind turbine FI126857B|2017-06-30|Crane Control US7731157B2|2010-06-08|Apparatus and method for heave compensation AU2004222734B1|2006-01-19|Method and apparatus for monitoring a load condition of a dragline CA3053477C|2021-10-26|Offshore ship-to-ship lifting with target tracking assistance CN103613014A|2014-03-05|Tower crane, and anti-collision system, anti-collision method and anti-collision device thereof JP2006044932A|2006-02-16|Crane attitude arithmetic unit, overload preventive device and work range limiting device CA2846266A1|2013-03-07|Load measurement on the load receiver of hoisting devices US4147330A|1979-04-03|Method for setting down or taking up a load from or upon a loading location by means of a crane and an apparatus for carrying out the method JP6347344B1|2018-06-27|Crane stop system CN107835785B|2021-03-23|Tower positioning system WO2020049497A1|2020-03-12|System and method for positioning an offshore structure US20210253405A1|2021-08-19|Crane CN110740962B|2021-11-09|Wind turbine lifting device WO2019120414A1|2019-06-27|Method and apparatus for preventing oscillation at a wind turbine tower JP2020030051A|2020-02-27|Automatic driving device and automatic driving method for indoor crane EP3383785A1|2018-10-10|Lifting bracket CN113544078A|2021-10-22|Crane and control device thereof US10697435B2|2020-06-30|Anti-swing device for offshore wind turbine tower installation CN215974703U|2022-03-08|Lifting height monitoring system CN113526382A|2021-10-22|Lifting height monitoring system and method CN112010167A|2020-12-01|Control method and system for blade lifting appliance CA3128899A1|2020-08-13|System and methods for determining relative position and relative motion of objects Stipanov et al.2010|MAREA-maritime environment monitoring system
同族专利:
公开号 | 公开日 EP3137407A4|2017-12-27| DK178978B1|2017-07-24| WO2015165463A1|2015-11-05| US20170050824A1|2017-02-23| US10611608B2|2020-04-07| EP3137407A1|2017-03-08|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JPS5870395A|1981-10-21|1983-04-26|Mitsubishi Electric Corp|Moving object approach alarm| US5253771A|1991-11-18|1993-10-19|The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration|Counter-balanced, multiple cable construction crane| US6439407B1|1998-07-13|2002-08-27|The United States Of America As Represented By The Secretary Of Commerce|System for stabilizing and controlling a hoisted load| JP2004067355A|2002-08-09|2004-03-04|Mitsubishi Electric Corp|Auxiliary device for hanging work, inclination angle sensor tool and auxiliary method for hanging work| US7367464B1|2007-01-30|2008-05-06|The United States Of America As Represented By The Secretary Of The Navy|Pendulation control system with active rider block tagline system for shipboard cranes| DE102008024513B4|2008-05-21|2017-08-24|Liebherr-Werk Nenzing Gmbh|Crane control with active coast sequence| US8070000B2|2009-10-23|2011-12-06|Vestas Wind Systems A/S|Apparatus and method for assembling wind turbines| DK177006B1|2010-01-19|2010-11-22|Ah Ind Projects Aps|Method for controlling orientation of a load suspended in a carrier wire around the wire as well as a player arrangement| US20110221215A1|2010-03-12|2011-09-15|Vestas Wind Systems A/S|Methods and apparatus for handling a tower section of a wind turbine with a crane| NL2004987C2|2010-06-28|2011-12-29|Ihc Holland Ie Bv|LIFT DEVICE AND METHOD FOR POSITIONING A LOG OBJECT.| JP5870395B2|2011-07-12|2016-03-01|Ihi運搬機械株式会社|Sensor for detecting the swing angle of crane load| DE102012004914A1|2012-03-09|2013-09-12|Liebherr-Werk Nenzing Gmbh|Crane control with rope power mode| DK177672B1|2012-11-27|2014-02-17|Liftra Ip Aps|Lifting Frame| SG11201506436RA|2013-02-18|2015-09-29|High Wind N V|Device and method for placing a rotor blade of a wind turbine| US8979148B1|2013-03-07|2015-03-17|II Gary Michael Hatton|Fly jib for a crane and method of use|US10822208B2|2014-12-23|2020-11-03|Manitowoc Crane Companies, Llc|Crane 3D workspace spatial techniques for crane operation in proximity of obstacles| DK179142B1|2015-12-03|2017-12-04|Liftra Ip Aps|Lifting brackets| EP3612487B1|2017-04-18|2021-03-10|Siemens Gamesa Renewable Energy A/S|Method for installing or uninstalling a component of a wind turbine| CN110740962B|2017-06-12|2021-11-09|西门子歌美飒可再生能源公司|Wind turbine lifting device| US10697435B2|2017-09-11|2020-06-30|Dalian University Of Technology|Anti-swing device for offshore wind turbine tower installation| CA3012945C|2017-11-22|2019-05-21|LiftWerx Holdings Inc.|Lift system mountable in a nacelle of a wind turbine| CN110092298B|2018-01-31|2020-12-11|新疆金风科技股份有限公司|Hoisting control system, method and device| WO2019219151A1|2018-05-17|2019-11-21|Vestas Wind Systems A/S|Wind turbine element lifting method and apparatus| NL2022947B1|2019-04-15|2020-10-22|Itrec Bv|A vessel and method for installation of a pile adapted to support an offshore wind turbine| CA3143694A1|2019-06-18|2020-12-24|Barnhart Crane and Rigging Co.|Wind turbine blade removal device and method| BE1028262B1|2020-05-04|2021-12-07|Deme Offshore Be Nv|Lifting system and method for lifting an elongated object|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 DKPA201400235|2014-04-28| PCT/DK2015/000017|WO2015165463A1|2014-04-28|2015-04-24|Method and device for automatic control of the position of a burden suspended in a main wire on a crane| DKPA201600255A|DK178978B1|2014-04-28|2016-04-28|Method and device for automatic control of the postion of a burden suspended in a main wire on a crane.|DKPA201600255A| DK178978B1|2014-04-28|2016-04-28|Method and device for automatic control of the postion of a burden suspended in a main wire on a crane.| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|